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1.0 SUMMARY

Performance objectives for the UTW propulsion system were established

by the Statement of Work as follows:

SLS, 311 K (90 ° F) day

Uninstalled Thrust 81.4 _N (18,300 ib)

Uninstalled sfc 0.00962 g/sN (0.34 Ib/hr/lb)

' Installed Thrust 77.4 kN (17,400 ib)

Test data adjusted for ambient conditions at Peebles, Ohio test site

met the unlnstalled thrust and sfc objectives with a bellmouth inlet, and met

the installed thrust objective with a high Mach number inlet. Because of

minor deficiencies in the compressor and low pressure turbine efficlencles,

the objective T41 levels were exceeded by 31 to 36K (56 ° - 64 ° F). These

temperatures were well within safe operating limits of the engine. Test data

indicated that the exhaust nozzle effective area was about 0.097 m 2 (150

in. 2) larger than that calculated from static measurements. Increasing the

nozzle area above 1.87 m2 (2900 in. 2) did not affect airflow, indicating that

this was the limit of flap divergence without flow separation. Exhaust 1

velocities, which are critical from an acousti standpoint, at the installed

takeoff condition were:

Bypass stream 197 m/s (645 ft/sec)

Core stream 256 m/s (840 ft/sec)

Fan performance in the forward operating mode agreed well with scale

model simulator data. Airflow exceeded predicted values by 1 - 2% along

operating lines near peak efflclencles. Efficiencles were equal to or

slightly better than predicted levels. Fan hub performance generally ex-

ceeded predicted levels at all blade pitch and speed settings tested, indlca-

ting good core supercharging. Although no stall testing was done, stall

margin appeared to be adequate for all operating conditions.

The reverse thrust performance objective of 35% of takeoff thrust was

not demonstrated due to premature failure of the exhaust nozzle support ring.

However, data at off-optlmum reverse pitch angle indicated that the reverse

thrust objective probably would not have been met at the predicted condi-
tions. Traverse data indicated that the low reverse thrust was due to

reduced pressure rise in the fan. As compared to data from the 50.8-cm

(20-in.) simulator test fan, rotor airflow and work input appeared to be as

expected. The reduced reverEe thrust, therefore, is believed to be a result

of inlet pressure distortion, perhaps introduced by the acoustic splitter,

and possible exhaust gas reingestion effects. These factors will be further

investigated on the next engine buildup.
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2.0 INTRODUCTION

The General Electric Company currently is engaged in the Quiet Clean,

Short-Haul Experimental Engine Program (QCSEE) under Contract NAS3-I_021 to
the NASA-Lewis Research Center. The under-the-wing (UTW) experimental

engine was designed and built under the program to develop and demonstrate
technology applicable to engines for future commercial short-haul turbofan

' aircraft (Reference i).

The initial buildup of the UTW engine and boilerplate nacelle was
tested at the General Electric, Peebles, Ohio Outdoor Test Site 4D during

the period from September 2 through December 17, 1976. Initial testing

included a mechanical and systems checkout with hardwall acoustic panels
and a bellmouth inlet. Performance data were taken over a range of speeds,

exhaust nozzle areas, and fan blade angles. This phase of testing provided

data in the range of takeoff and approach operating conditions to explore

"uninstalled" performance with minimal loss of ram recovery. In addition,

fan performance characteristics were mapped over a limited range of blade
settings.

The inlet then was changed to the boilerplate high Mach number design

to investigate installed performance with real ram recovery losses. Points

were repeated at takeoff and approach operating conditions.

Initial reverse thrust testing was attempted by transitlouing the

blades to the reverse setting (through stall pitch) while motoring on the

starter. The engine then was fired in the reverse mode and operated to

higher speeds. During this phase of testing, the exhaust nozzle support

ring failed, allowing one nozzle flap and associated hardware to be ingested

by the engine. This failure resulted in a premature conclusion of the test
before much of the desired reverse mode and acoustic data could be acquired.

This volume of the propulsion system test report includes overall

propulsion system performance observations and results of detailed analyses

of the variable-pitch fan aerodynamic characteristics.

2
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3.0 PROPULSION SYSTEM PERFORMANCE

3.1 FORWARDMODE PERFORMANCEOBJECTIVES

The UTNpropu!sion system was sized for an 81.4-kN (18,300-ib) thrust, i

{ uninstalled, bare engine. It is flat-rated to 311 K (90 ° F) The perfor-
f mance objective levels as identified in the Statement of Work for sea level

static operation are shown in Table i.

As the QCSEE program progressed, the cycle deck was updated to match

current core engine representations. Also, results from scale model QCSEE

component tests were factored into the deck. As a result of these revisions,

it was predicted that the experimental engine would exceed the objective

turbine inlet temperature (T41) levels, since further component development

was not scheduled prior to full-scale manufacture. The predicted performance

of the nominal experimental engine, as defined by the cycle deck, is included
in Table i.

Another factor, which contributed to increased T41, was found when the

engine went to test. At takeoff thrust, the compressor operating point was

at a higher flow than expec_ed_ and, thus, in a region of low compressor

efficiency. The combination of low compressor and LP turbine efficiencies
resulted in a higher temperature for a given thrust than planned, although

well within engine capability.

It should be noted that engine testing was conducted under local atmo-

spheric conditions at the test site. Any significant fluctuations in ambient

conditions during a test reading would result in poor data quality. Where
particularly bad data were apparent, they were rejected. However, data from

several readings taken under blustery weather conditions were retained be-

cause they showed results not otherwise available from the testing. In

particular, the installed data at high thrust levels were obtaln_d under
adverse weather conditions.

A cross section of the UTW engine showing flow direction in the forward

mode is shown in Figure I. Instrumentation locations are noted on the figure.

The acoustic splitter location also is shown in Figure I, but it was not

installed for any of the forward mode performance readings.

3.2 UNINSTALLED PERFORMANCE

As sho_m in Table i, on a 311-K (90°-F) day at sea level static, un-

installed, the experimental engine met the sfc goal, but the turbine inlet

temperature exceedpd the objective by 36 K (64° F). The sfc goal also was

met on a standard day, 288.15 K (518.67 ° R), with the objective T41 level

exceeded by 30 K (54° F).

3
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The performance levels for the experimental engine (507-001/1) shown in%

Table i are based on extrapolation from the ambient test conditions at the
Peebles test site. The test reading which c_ae closest to matching the

objective takeoff performance point was about 3.78 kN (400 ib) low in thrust.

This reading was adjusted for the change in amLient conditions and thrust
level to get the values shown in Table i. The fan pitch angle for this

reading was -2.8°. There are other possible pitch-setting/fan-speed com-

binations which also could give takeoff thrust.
f

3.2.1 Thrust Versus Airflow

Thrust airflow characteristics are shown in Figures 2 through 5 for +5 °,

0°, -3 °, and -5° pitch angles (ROPDEG), and fan corrected speeds (PCNLR) from

80 to 97%, dependent on data availability. These figures primarily include

data from the fan mapping run_. For convenience in making comparisons, the

available installed data also are included on these same figures. (The

plotting symbols used for the performance plots in this report are shown in
the foldout on the last page of Section 3.0.) It was found throughout the

testing that the ind:cated exhaust nozzle area (from static calibrations) wa_'
smaller than the calculated (cycle balance) effective area by about 0.097 m2

(150 in.2) over most of the engine operatlng range. Data taken at the nomi-

nal takeoff area, 1.61 m2 (2500 in.Z), consistently corresponded to the

symbols for 1.52 m2 (2350 in.2) indicated area. Calibration rechecks did not

resolve this difference, which probably was due to flap opening under inter-

nal pressure or unidentified flow-leakage paths. The engine appeared to be

on a lower operating line.

At +5 ° pitch angle (Figure 2), the measured corrected thrust as a func-
tion of corrected airflow tended to be below predictions. At 0° (Figures

2 and 3), the same low trend occurred. At -3 ° and -5° (Figures 4 and 5), the

uninstalled data tend to match predictions more closely.

The trend of thrust versus airflow for all the bellmouth test data above

80% fan speed is shown in Figure 6. The objective uninstalled thrust and
takeoff airflow values also are shown.

3.2.2 Specific Fuel Consumption

Specific fuel consumption (sfc) was generally 0.00042 to 0.00057 g/sN

(0.015 to 0.02 ib/hr/ib) higher than the predicted minimum. The corrected

sfc trends are shown in Figures 7 through i0 for pitch angles +5 °, 0°, -3°,

-5 e, respectively. The data included on these figures are primarily from the

fan mapping runs where the bypass nozzle area was varied at constant fan

speed. The fuel flow for all the bellmouth data above 80% fan speed is shown
in Figure ii.
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3.3 INSTALLED PERFORMANCE b
i

i The installed thrust objective was 77.4 kN (17,400 Ib). There were no

' sfc or turbine temperature objectives installed. At this thrust level,

turbine inlet temperature was 4 K (8@ F) lower than the uninstalled value.

The installed performance included the ram recovery effects of the aero-

acoustic inlet and some minor drag terms associated with the pylon and
exh=ust cowls.

The values shown in Table I for the experimental engine are based on

scaling a test point at comparable installed thrust at Peebles ambient
conditions to a 311 K (90@ F) Gay at sea level, and adjusting thrust for

133 N (30 ib) loss associated with the pylon and exhaust cowl drag. The fan

pitch angle was -2.9@ for this point.

3.3.1 Thrust Versus Airflow

Thrust airflow data with the high M_ch inlet installed also are included
in Figures 2 through 5. Only a few installed data points are available for

direct comparison with corresponding bellmouth points. In Figure 3 (0°

ROPDEG), the points at 1.61 m2 (2500 in.2) indicated area are about 1.5%

lower in thrust, as expected. In Figures 4 and 5, some of t _ installed

points are higher in thrust than the corresponding ux,lnstalled data, but this
should be due to blustery ambient conditions affecting the quality of the
installed data.

Thrust-alrflow characteristics for all the installed data are shown in

Figure 12. At takeoff airflow and exhaust area, the installed thrust is

about 2% lower than the uninstalled values shown in Figure 6. Increasing

indicated nozzle area above 1.87 m2 (2900 in.2) did not affect engine per-

formance. At large areas, the flaps were diverged so far that the flow no

longer stayed attached; the nozzle throat probably was set at the hinge-line
area. :

3.3.2 _fic Fuel Consump.tion

The variation of installed specific fuel consumption with thrust is

included in Figures 7 through i0. As expected, where points are comparable

to uninstalled data, the installed sfc is higher. Comparison of specific
trends is difficult from the available data, however, because of data
scatter. The fuel flow trends for all the installed data are shown in

Figure 13. At lower airflows, the fuel flow tends to be higher than that of

the bellmouth data. At higher airflows, the fuel flow is comparable to
uninstalled levels, but data quality may be a factor here.

18
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3.4 EXHAUST VELOCITY

The bypass exhaust stream and core exhaust stream velocities are shown
in Figures 14 and 15, respectively, for the installed data readings, the
bypass exhaust velocity at installed takeoff thrust is about 197 m/s (645
ft/sec). The core stream velocity is about 255 m/s (840 ft/sec).

3.5 REVERSE THRUST MODE

,! The reverse thrust objective was 35% of takeoff thrust. The original

i program plan called for demonstration of reverse thrust by fan blade rotation
through either flat pitch or stall pitch. However, the test results obtained
from the 50.8-cm (20-in.) model fan showed that the desired thrust level

could not be obtained by rotation through flat pitch because of the high fan

speed required. Also, due to the reverse blade camber in this mode, the
noise goal would have been exceeded. Consequently, it was decided to reverse

only through stall during the engine test.

In the stall pitch direction, it was expected that objective reverse

thrust would be achieved at -95 ° fan pitch angle, at 185 kg/s (408 Ibs/sec)

airflow. This operating condition was not demonstrated because of the

nozzle flap support ring failure.

The flowpath for reverse mode operation is sho_nl in Figure 16. In this

mode the exler _laps were positioned to maximum divergence. The inlet rakes

were reversed. The fan discharge and turblne discharge rakes were removed

because acoustic tests h_d alsc been included as part of the scheduled test.

Air_]ow was based on the static pressure measurements from _aps on the i_n_r

and o_er duc_ wall aft of the fan ste_or. The splitter was installed for

the first time during the engine test.

Only five readings were taken in reverse mo_e, three of which cou_J be

reduced with reasonably valid results. 0nly minimal instrumentation was

operational since the engine was in an acoustic configuration. The estimated
airflow was close to the predicted level based on performance oi the 50.8-cm

(20-in.) simulator; ,cwever, fan exh_,ust )ressure ratio was low.

The test _ate are shown in Figure ]7 along with predicted trends for _he

two pitch angles whlcb were run. The test data indicate that L%_ objective
thzust of 27.1 kN (o090 ib) probably would not have been achieved, even if

the desired operating conditions were run. Possible reasons for these low

performance levels are discussed in Section 4.0.

21
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4.0 UTW FAN AERODYNAMIC PERFORMANCE

!

4.1 FORWARD MODE

4.1.1 Fan Aero Design and Scale Model Test

!. Details of the QCSEE under-the-wing (UTW) fan design, both aerodynamic

' and mechanical, are given in References i and 2. Briefly summarizing, the

aerodynamic design point for the UTWfan was selected midway between takeoff
and altitude cruise engine operating conditions. Design-point corrected tip

speed was 306 m/sec (1005 ft/sec) with an average fan bypass pressure r_tio
of 1.34 and an average fan core pressure ratio of 1.23. Design-point

, bypass ratio was 11.3 and the objective adiabatic efficiencies were 88.0%

for the bypass portion and 78.0% for the core portion.

An exact linear scale model of the fan component (scale factor of

20 ��Xtested in the Aero/Acoustic Facility at the G_ Research and

Development Center in Schenectady, New York prior to UTW engine tests.
Facility constraints required a modification to this Simulator Fan in the

bypass duct and the transition (or core inlet) duct, but the geometry of the

engine's fan rotor and OGV's _Jere accurately modeled. The fan performance
of the Simulator was e_aluated for both forward-thrust and reverse-thrust

modes, with both bel!mouth and high Mach inlets, along several operating
lines at three rotor blade pitch an_le __ttings. Details of the test

results are given in Reference 3. Although the Simulator did not ac|,ieve

its design-point flow and pressure ratio objectives at the design rotor

pitch angle, it was recognized that the variability of both the rotor
blades and the bypass-stream exhaust nozzle in the engine 6ould allow

specific operatlng-point objectives to be attained with the original design.

Following the scale model tests, the fan overall-performance representa-

tion in the UTW engine-cycle deck was revised by curve-fitting the Simulator

data. The cycle deck's fan pressure ratio versus flow and speed relationships

were adjusted using the test data, and the efficiencies generally were within

a point of the measured data. Details of this revised performance representa-

tion, upon which the estimates of the UTW-engine fan performance were based,
are given in Reference 2. During tests of the engine, the fan's overall

performance was then compared to the cycle deck's predicted levels.

4.1.2 Fan Bypass Region Overall Performance

Performance characteristics of the engine fan bypass region are presented

in Figures 18 through 20 for tests with the bellmouth inlet installed.

Measured test data, through which solid lines are drawn, are plotted against

background dashed lines which correspond to the revised-fan-performance

representation discussed in Section 4.1.1. Data were taken primarily in the
unthrottled region, well below the estimated fan stall line. However,

sufficient data were obtained to demonstrate objective performance in the
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vicinity of the expected takeoff operating condition and to establish the
level of fan peak efficiency over the hlgh-speed range. Fan performance at

all speeds and blade pitch settings tested showed good agreement with the

cycle deck representation. Fan efficiency in the unthrottled region is

equal to or slightly greater than the estimated values in the cycle represen-
tation, and peak efflclencles agree with predicted values within a point at

° each speed tested. Over the low-speed range tested, the fan pumping capacity

slightly exceeded the predicted values of flow by 1% - 2% along operating
lines near peak fan efficiency. Figures 13 through 20 show this trend to be

consistent at all rotor pitch settings tested, and indicate that these

discrepancies decreased as the blade was opened. These differences between
measured and predicted flows also decreased as the fan speed increased at a

given blade pitch setting. At the highest speed tested with the bellmouth

inlet (95% _f design speed), the measured flow was less than 1% higher than

predicted.

As was seen in the scale model tests, no significant differences in the

pumping capability of the fan were observed between data taken with the
bellmouth inlet and with the hlgh Mach inlet. Data points of direct comparison

are shown in Figures 18 through 20; those taken with the high Mach inlet are

denoted with a flagged symbol. The fan inlet pressure was accurately deter-

mined by considering the boundary-layer rake-pressure measurements, and flow
was determined from analytical correlations of scale-model inlet data. In

the relatively unthrottled region of operation, there was no apparent effect

on the fan rotor caused by the thickened rotor-tip-inlet boundary layer, and

the data indicated no significant shifts in either constant speed lines or
lines of constant nozzle _rea on the performance map. A comparison of fan

efficiency between the bellmouth and high Mach inlet data was not as straight-
forward since the data reduction procedure and the available instrumentation

could not account for any boundary-layer profile effects at the fan discharge
as was done in the inlet. Higher fan efflciencies were calculated from the

high Mach inlet data than from the bellmouth data, but are not shown in

Figures 18 through 20 since the comparison would not be valid. A fairer

"weighting" technique for the fan discharge conditions would have lowered

the calculated efficlencies toward the values achieved during the bellmouth
testing.

4.1.3 Fan Hub (Core Inlet) Region Overall Performance

Performance characteristics of the engine fan-hub region were measured

by radial rakes located in the transition (core compressor inlet) duct and

are presented in Figures 21 through 23. It was found to be more meaningful
to correlate fan-hub pressure _ise and efficiency against total fan flow

rather than core flow, as the axial gap between the island trailing edge and
the flow splitter leading edge tends to lessen the influence of core throt-

tling on the fan. As in the bypass region, measured engine data, through
which solid lines are drawn, are plotted against background dashed lines
derived from the Simulator fan test results. Since little da_a were avail-

able from either the Simulator or engine fans to evaluate the efficiency of
the fan itself separate from the loss characteristics of the transition
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k

duct, a comparison with Simulator data was made in Figures 21 through 23 of
I the measured performance determiped by the core inlet rakes at Plane 25.

' Although slight differences existed between the engine and Simulator transi-

' tion duct geometry and axiai placement of the e-re inlet radial rakes, they
were not considered migniflcant erough to inva] _ate the_e compalisons.

F_n-hub performance generally exceeded that of the Simulator at all

rotor pitch settings and speeds tes=ed. Since the Simulato= fan produced

greater-than-design values of hub pressure ratio and adiabatic efficiency,

the engine fan also demonstrated more-than-sufficient hub supercharging

capability_ The same overall _rends in hub _er_crm_ee were observed in

both the scale model and the rotor pitch was changed.
engine as

i Efficiency i_creased along all speed lines as the fan was thr..ttled and was
highest for the +5 ° (closed) rotor pitch angle, decreasing as the rotor

blade was opened toward the -5° (open) setting.

4.1.4 Rotor Exit Radial Profiles

Radial profiles of rotor-discharge and bypass-flow total pressure and

temperature were defined by the data from the highest-reading element_ cn
the arc/radial rakes in the bypass duct. Adiabatic efficiency _as calculated

from these data, and the results are shown in Figures 24 through 26 for a

representative high speed, high efficiency point at each of the three blade

anglem tested. As was done in the overall-performance evaluation, comparison

is made between the scale model test resul_s and the engine data. Figures
24 through 26 show very similar profiles of rotor pressure rise and efficiency

for the two fans, free of any localized depressions which would indicate

trouble areas. There is a genera], tendency for the eng_ e fan rotor to

produce more pressure rise wi=h better efficiency than the scnle model in

the tip region. T_lese characteristics of the rotor profiles are exhibited

at each of the _bree rotor pitch settinga: 0° (nominal), -_3° (closed), and
-5 ° (open).

4.1.5 Bypass OGV Performance

Limited comparative data were available to allow a comparison between
the scale model and the engine, since the majority of the Simulator data
were taken with radial rakes positioned between OGV's r_ther than arc

rakes. Of the three comparisons made in Figures 24 through 26, only the -
-5 ° (open) blade pitch setting of Figure 25 had sufficient data to determine

complete stage efficiency profiles_ This particular _etting was observed
to have the highest OGV loss level in the scale model tests, due to both

off-design incidence angle and the high Mach number environment. As shown

in Figure 25, the difference between rotor and stage effJalency (which

indicates the magnitude of the OGV loss) is greater for the engine across
the outer third and inner third of the annulus, a._dabout the same over the

middle third. However, the hiFher OGV loss is offset oy the generally

higher rotor efficiency to ylei_ an overal_ stage efficiency in the engine
which is nearly identical to that measured on the Simulator.
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4.1.6 Core Inlet Radial Profiles

Radial profiles of core inlet flow total pressure and temperature were

measured by radial rakes located between struts in the transition duct.

With the exception of the transitlon-duct-strut wake losses, these data

define the inlet conditions to the core compressor. A comparison is made

between the scale model profiles and the engine data in Figures 27 through

29 for the same representative high speed readings used in the rotor exit-
!

profile comparisons of Section 1.4. A comparison of bypass ratios indicates

that the core engine operated close to the assumed schedule that was used

in the scale model tests, implying that similar flow-field patterns existed

through the fan hub region and into the transition duct. In general, the

engine pressure profiles measured slightly steeper gradients than the scale
model and also measured higher average levels. The temperature-rise levels

were higher in the engine, resulting in comparable fan-hub adiabatic effl-
ciencies in both Simulator and engine.

4.2 REVERSE THRUST MODE

4.2.1 Overall Fan Performance

Test results obtained with the Simulator fan in the reverse thrust

mode (Reference 3) indicated that the objective fan reverse thrust could he

achieved with the rotor blades reversed through stall pitch. Reverse mode

testing of the UTW engine was more limited and yielded insufficient data to

fully define the fan's reverse mode performance, but the indication was

that the engine could not produce the objective reverse thrust at the same

fan speed and rotor blade pitch setting as demonstrate by the scale model.

The engine data are shown in Figure 30 as fan pressure ratio (ratioed to

ambient) versus total inlet flow (corrected to ambient conditions), and in

Figure 31 as adiabatic efficiency versus inlet flow. These flow rates are

rather approximate, however, since they were calculated from very limited

measurements. A comparison with the cycle deck's predicted levels of

pressure ratio and efficiency, derived from the Simulator test results,

indicated that the engine fan performance was lower than expected. To
determine the extent of the differences, radial traverse data taken in the

inlet throat and aft duct were analyzed and are presented in the following
sections.

4.2.2 Fan Rotor Discharge Flow-Field Characteristics

Reverse mode fan performance was evaluated from traverse data taken

near the inlet throat, available only for one data point taken at 97% fan

speed with the blades set at -i05 °. Based upon a radial integration of the

total pressure, temperature, and swirl angle data, the following parameters

were deduced: rotor discharge flow (corrected to Plane-15 conditions rather

than ambient as in Figures 30 and 31), mass-weighted average pressure

ratio, average temperature ratio, and fan thrust. Comparison with the 50.8-

cm (20-in.) Simulator fan test results is tabulated and plotted in Figure 32.
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Note that for the Simulator, inlet-throat traverse data were only obtained
at 90% fan speed. Thus, the magnitudes of the radial profiles in Figure 32

' are not comparable, but the qualitative shapes are. Th_ overall fan per-

' formance parameters, however, could be interpolated from the available
Simulator data for the same condition tested in the engine. The tabulated

summary in Figure 32 indicates that the rotor discharge flows agreed within
2%, and the temperature ratios (work input) were practically identical; but,

the engine pressure rise was 27% lowe_ and the average discharge swirl from

the engine fan was higher. Thus the engine fan thrust, as calculated from

an integration of the traverse data, was significantly lower end consistent
with the low level of net thrust recorded by the thrust meter.

The low thrust level of the engine fan, relative to the Simulator fan

"' in the reverse thrust mode, is speculated to be a result of the geometry

_ differences between the two vehicles. The incoming pressure distortion to
, the fan rotor due to the upstream acoustic splitter could produce radial

shifts in the flow field that would change the fan-pumplng characteristics.

The fan rotor platform geometry and blade shape at the hub also were notably

different between engine and scale model; there were rather large rakes in
the inlet throat of the Simulator but not in the engive. Both of these

differences may have caused a difference in the fan discharge effective-

flow area. The engine's fan performance was consistent with what would be

expected on a lower operating line, as if the effective discharge area was

larger in the engine than in the scale model. Future reverse mode testing
of the U'FN fan should investigate the nature of the flow field at both

rotor inlet and exit, and perhaps the acoustic splitter ring can be removed
to assess its impact on the fan characteristics.

4.2.3 Exlet (Aft Duct) Flow-Field Characteristics

Significant geometric differences existed in the aft (bypass) duct

between the UTW englne and the Simulator, in particular, the presence =f an

acoustic splitter in the engine duct that was not in the scale model.
Traverse data for total pressure and total temperature were obtained across

three-quarters of the annulus at two operating conditions, and the results

are plotted in Figure 33. The pressure traverse indicated the expected

'- localized region of high loss and blockage around the acoustic splltter.

The temperature traverse measured higher values below the splitter (near

the ID) than above, possibly indicating, some ingestion of core exhaust
gases. Total inlet flow (corrected to Plane-15 conditions) was deduced

from wall static pressures and a radial integration of the traverse data,
and the results compared favorably with the 50.8-cm (20-1n.) Simulator flow

at similar conditions and with separate test results on a scale model of
the exlet.

4.2.4 Core Duct Performance

A_ in the forward thrust mode, measurements taken by the radial raker
located between struts in the transition duct were used to evaluate core
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duct performance. The total pressure recovery of the flow entering the
\

core compressor is shown in Figure 34, comparln_ _he limited engine data to
the results of the 50.8-cm (20-in.) Simulator tests. As discussed in

/ Reference 3, the recovery was found to be a function of the external momentum,

, or total fan flow_ rather than of the core flow. Although sl_ht differences
existed between the t_ vehicles in the placement of the core inlet rakes

and in the contour of the transition duct, the recovery characteristics of

both are very similar. Apparently the engine core flow was not significantly
affected by the losses associated with the acoustic splitter. The recovery " I_

levels measured i,_ _he scale model were recognized to be low, relative to I
design inter.t, but not low enough to be a limiting factor in producing the !
objective reverse thrust. !,

t
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